全书分为三大部分:部分,主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第2章我们比较了多种不同的数据模型和查询语言,讨论各自的适用场景。接下来第3章主要针对存储引擎,即数据库是如何安排磁盘结构从而提高检索效率。第4章转向数据编码(序列化)方面,包括常见模式的演化历程。第二部分,我们将从单机的数据存储转向跨机器的分布式系统,这是扩展性的重要一步,但随之而来的是各种挑战。所以将依次讨论数据远程复制(第5章)、数据分区(第6章)以及事务(第7章)。接下来的第8章包括分布式系统的更多细节,以及分布式环境如何达成一致性与共识(第9章)。第三部分,主要针对产生派生数据的系统,所谓派生数据主要指在异构系统中,如果无法用一个数据源来解决所有问题,那么一种自然的方式就是集成多个不同的数据库、缓存模块以及索引模块等。首先0章以批处理开始来处理派生数据,紧接着1章采用流式处理。2章总结之前介绍的多种技术,并分析讨论未来构建可靠、可扩展和可维护应用系统可能的新方向或方法。


根据中华人民共和国国家版权局相关法规,本站不提供该PDF电子版书籍
您可以进入交流社群中继续寻找资料或购买正版书籍

Linux交流群

技术交流社群:https://www.linuxprobe.com/club

Linux书籍在线阅读:https://www.linuxprobe.com/chapter-00.html

本文原创地址:https://www.linuxprobe.com/data-intensive-applications.html编辑:姜 一 一,审核员:逄增宝