Python与机器学习这一话题是如此的宽广,仅靠一本书自然不可能涵盖到方方面面,甚至即使出一个系列也难能做到这点。单就机器学习而言,其领域就包括但不限于如下:有监督学习(Supervised Learning),无监督学习(Unsupervised Learning)和半监督学习(Semi-Supervised Learning)。而具体的问题又大致可以分两类:分类问题(Classification)和回归问题(Regression)。Python本身带有许多机器学习的第三方库,但《Python与机器学习实战》在绝大多数情况下只会用到Numpy这个基础的科学计算库来进行算法代码的实现。这样做的目的是希望读者能够从实现的过程中更好地理解机器学习算法的细节,以及了解Numpy的各种应用。不过作为补充,《Python与机器学习实战》会在适当的时候应用scikit-learn这个成熟的第三方库中的模型。

《Python与机器学习实战》适用于想了解传统机器学习算法的学生和从业者,想知道如何高效实现机器的算法的程序员,以及想了解机器学习的算法能如何进行应用的职员、经理等。


根据中华人民共和国国家版权局相关法规,本站不提供该PDF电子版书籍
您可以进入交流社群中继续寻找资料或购买正版书籍

Linux交流群

技术交流社群:https://www.linuxprobe.com/club

Linux书籍在线阅读:https://www.linuxprobe.com/chapter-00.html

本文原创地址:https://www.linuxprobe.com/python-machine-learning-2.html编辑:刘遄,审核员:逄增宝